Semilinear elliptic equations with Dirichlet operator and singular nonlinearities

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semilinear Elliptic Equations with Generalized Cubic Nonlinearities

A semilinear elliptic equation with generalized cubic nonlinearity is studied. Global bifurcation diagrams and the existence of multiple solutions are obtained and in certain cases, exact multiplicity is proved.

متن کامل

Degenerate elliptic equations with singular nonlinearities

The behavior of the “minimal branch” is investigated for quasilinear eigenvalue problems involving the p-Laplace operator, considered in a smooth bounded domain of RN , and compactness holds below a critical dimension N #. The nonlinearity f (u) lies in a very general class and the results we present are new even for p = 2. Due to the degeneracy of p-Laplace operator, for p = 2 it is crucial to...

متن کامل

Singular Solutions for some Semilinear Elliptic Equations

We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...

متن کامل

Weakly and strongly singular solutions of semilinear fractional elliptic equations

If p ∈ (0, N N−2α ), α ∈ (0, 1), k > 0 and Ω ⊂ R is a bounded C domain containing 0 and δ0 is the Dirac measure at 0, we prove that the weak solution of (E)k (−∆) u + u = kδ0 in Ω which vanishes in Ω is a weak singular solution of (E)∞ (−∆) u + u = 0 in Ω \ {0} with the same outer data. Furthermore, we study the limit of weak solutions of (E)k when k → ∞. For p ∈ (0, 1+ 2α N ], the limit is inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2017

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2016.10.029